2,675 research outputs found

    Platinum(II) phosphonate complexes derived from endo-8-camphanylphosphonic acid

    Get PDF
    The reactions of cis-[PtCl₂L₂] [L = PPh₃, PMe₂Ph or L₂ = Ph₂P(CH₂)₂PPh₂ (dppe)] with endo-8-camphanylphosphonic acid (CamPO₃H₂) and Ag₂O in refluxing dichloromethane gave platinum(II) phosphonate complexes [Pt(O₃PCam)L₂]. The X-ray crystal structure of [Pt(O₃PCam)(PPh₃)₂]•₂CHCl₃ shows that the bulky camphanyl group, rather than being directed away from the platinum, is instead directed into a pocket formed by the Pt and the two PPh₃ ligands. This allows the O₃P–CH₂ group to have a preferred staggered conformation. The complexes were studied in detail by NMR spectroscopy, which demonstrates non-fluxional behaviour for the sterically bulky PPh₃ and dppe derivatives, which contain inequivalent phosphine ligands in their ³¹P NMR spectra. These findings are backed up by theoretical calculations on the PPh₃ and PPhMe₂ derivatives, which show, respectively, high and low energy barriers to rotation of the camphanyl group in the PPh₃ and PPhMe₂ complexes. The X-ray crystal structure of CamPO₃H₂ is also reported, and consists of hydrogen-bonded hexameric aggregates, which assemble to form a columnar structure containing hydrophilic phosphonic acid channels surrounded by a sheath of bulky, hydrophobic camphanyl groups

    Contrasting phenotypes of putative proprioceptive and nociceptive trigeminal neurons innervating jaw muscle in rat

    Get PDF
    BACKGROUND: Despite the clinical significance of muscle pain, and the extensive investigation of the properties of muscle afferent fibers, there has been little study of the ion channels on sensory neurons that innervate muscle. In this study, we have fluorescently tagged sensory neurons that innervate the masseter muscle, which is unique because cell bodies for its muscle spindles are in a brainstem nucleus (mesencephalic nucleus of the 5(th )cranial nerve, MeV) while all its other sensory afferents are in the trigeminal ganglion (TG). We examine the hypothesis that certain molecules proposed to be used selectively by nociceptors fail to express on muscle spindles afferents but appear on other afferents from the same muscle. RESULTS: MeV muscle afferents perfectly fit expectations of cells with a non-nociceptive sensory modality: Opiates failed to inhibit calcium channel currents (I(Ca)) in 90% of MeV neurons, although I(Ca )were inhibited by GABA(B )receptor activation. All MeV afferents had brief (1 msec) action potentials driven solely by tetrodotoxin (TTX)-sensitive Na channels and no MeV afferent expressed either of three ion channels (TRPV1, P2X3, and ASIC3) thought to be transducers for nociceptive stimuli, although they did express other ATP and acid-sensing channels. Trigeminal masseter afferents were much more diverse. Virtually all of them expressed at least one, and often several, of the three putative nociceptive transducer channels, but the mix varied from cell to cell. Calcium currents in 80% of the neurons were measurably inhibited by μ-opioids, but the extent of inhibition varied greatly. Almost all TG masseter afferents expressed some TTX-insensitive sodium currents, but the amount compared to TTX sensitive sodium current varied, as did the duration of action potentials. CONCLUSION: Most masseter muscle afferents that are not muscle spindle afferents express molecules that are considered characteristic of nociceptors, but these putative muscle nociceptors are molecularly diverse. This heterogeneity may reflect the mixture of metabosensitive afferents which can also signal noxious stimuli and purely nociceptive afferents characteristic of muscle

    Development of a Fast Position-Sensitive Laser Beam Detector

    Full text link
    We report the development of a fast position-sensitive laser beam detector with a bandwidth that exceeds currently available detectors. The detector uses a fiber-optic bundle that spatially splits the incident beam, followed by a fast balanced photo-detector. The detector is applied to the study of Brownian motion of particles on fast time scales with 1 Angstrom spatial resolution. Future applications include the study of molecule motors, protein folding, as well as cellular processes

    African American Ethnic and Class-Based Identities on the World Wide Web: Moderating the Effects of Self-Perceived Information Seeking/Finding and Web Self-Efficacy

    Get PDF
    The web is a potentially powerful tool for communicating information to diverse audiences. Unfortunately, all groups are not equally represented on the web, and this may have implications for online information seeking. This study investigated the role of class- and ethnic-based identity in self-perceived web-based information seeking/finding and self-efficacy. A questionnaire is administered, asking African Americans about their class and ethnic identities and web use to test a conceptual model predicting that these identities are positively related to web-based information seeking and web self-efficacy, which are then positively related to web-based information finding. Gender and previous web experience are expected to moderate the relationships. Structural equations modeling of these data support most of the predictions and indicate that these identities influence perceptions of online information seeking

    Developing an Onboard Traffic-Aware Flight Optimization Capability for Near-Term Low-Cost Implementation

    Get PDF
    The concept of Traffic Aware Strategic Aircrew Requests (TASAR) combines Automatic Dependent Surveillance Broadcast (ADS-B) IN and airborne automation to enable user-optimal in-flight trajectory replanning and to increase the likelihood of Air Traffic Control (ATC) approval for the resulting trajectory change request. TASAR is designed as a near-term application to improve flight efficiency or other user-desired attributes of the flight while not impacting and potentially benefiting ATC. Previous work has indicated the potential for significant benefits for each TASAR-equipped aircraft. This paper will discuss the approach to minimizing TASAR's cost for implementation and accelerating readiness for near-term implementation

    A new model study species: high accuracy of discrimination between individual freckled hawkfish (Paracirrhites forsteri) using natural markings

    Get PDF
    Variations between distinct natural markings of freckled hawkfish (Paracirrhites forsteri) could allow in situ identification of individuals from underwater photography. Receiver operating characteristic analysis was used to assess the ability of the Interactive Individual Identification System (I3S) software to assist in discriminating between images of P. forsteri individuals. This study's results show the high discriminant ability of I3S to differentiate between unlike individuals and identify images of the same individual. The ability to use automatic computer-aided assistance in the study of this species will enable future research to explore behaviour and movements of individuals in the wild

    Complete Genome Sequence and Comparative Metabolic Profiling of the Prototypical Enteroaggregative Escherichia coli Strain 042

    Get PDF
    Background \ud Escherichia coli can experience a multifaceted life, in some cases acting as a commensal while in other cases causing intestinal and/or extraintestinal disease. Several studies suggest enteroaggregative E. coli are the predominant cause of E. coli-mediated diarrhea in the developed world and are second only to Campylobacter sp. as a cause of bacterial-mediated diarrhea. Furthermore, enteroaggregative E. coli are a predominant cause of persistent diarrhea in the developing world where infection has been associated with malnourishment and growth retardation. \ud \ud Methods \ud In this study we determined the complete genomic sequence of E. coli 042, the prototypical member of the enteroaggregative E. coli, which has been shown to cause disease in volunteer studies. We performed genomic and phylogenetic comparisons with other E. coli strains revealing previously uncharacterised virulence factors including a variety of secreted proteins and a capsular polysaccharide biosynthetic locus. In addition, by using Biolog™ Phenotype Microarrays we have provided a full metabolic profiling of E. coli 042 and the non-pathogenic lab strain E. coli K-12. We have highlighted the genetic basis for many of the metabolic differences between E. coli 042 and E. coli K-12. \ud \ud Conclusion \ud This study provides a genetic context for the vast amount of experimental and epidemiological data published thus far and provides a template for future diagnostic and intervention strategies
    corecore